Graph Clustering Based on Structural Similarity of Fragments
نویسندگان
چکیده
Resources available over the Web are often used in combination to meet a specific need of a user. Since resource combinations can be represented as graphs in terms of the relations among the resources, locating desirable resource combinations can be formulated as locating the corresponding graph. This paper describes a graph clustering method based on structural similarity of fragments (currently connected subgraphs are considered) in graph structured data. A fragment is characterized based on the connectivity (degree) of a node in the fragment. A fragment spectrum of a graph is created based on the frequency distribution of fragments. Thus, the representation of a graph is transformed into a fragment spectrum in terms of the properties of fragments in the graph. Graphs are then clustered with respect to the transformed spectra by applying a standard clustering method. We also devise a criterion to determine the number of clusters by defining a pseudo-entropy of cluster. Preliminary experiments with synthesized data were conducted and the results are reported.
منابع مشابه
خوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملGraph Hybrid Summarization
One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملGraph Clustering Based on Structural/Attribute Similarities
The goal of graph clustering is to partition vertices in a large graph into different clusters based on various criteria such as vertex connectivity or neighborhood similarity. Graph clustering techniques are very useful for detecting densely connected groups in a large graph. Many existing graph clustering methods mainly focus on the topological structure for clustering, but largely ignore the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005